20 research outputs found

    Rethinking Attribute Representation and Injection for Sentiment Classification

    Full text link
    Text attributes, such as user and product information in product reviews, have been used to improve the performance of sentiment classification models. The de facto standard method is to incorporate them as additional biases in the attention mechanism, and more performance gains are achieved by extending the model architecture. In this paper, we show that the above method is the least effective way to represent and inject attributes. To demonstrate this hypothesis, unlike previous models with complicated architectures, we limit our base model to a simple BiLSTM with attention classifier, and instead focus on how and where the attributes should be incorporated in the model. We propose to represent attributes as chunk-wise importance weight matrices and consider four locations in the model (i.e., embedding, encoding, attention, classifier) to inject attributes. Experiments show that our proposed method achieves significant improvements over the standard approach and that attention mechanism is the worst location to inject attributes, contradicting prior work. We also outperform the state-of-the-art despite our use of a simple base model. Finally, we show that these representations transfer well to other tasks. Model implementation and datasets are released here: https://github.com/rktamplayo/CHIM.Comment: EMNLP 201

    Unsupervised Opinion Summarization with Noising and Denoising

    Full text link
    The supervised training of high-capacity models on large datasets containing hundreds of thousands of document-summary pairs is critical to the recent success of deep learning techniques for abstractive summarization. Unfortunately, in most domains (other than news) such training data is not available and cannot be easily sourced. In this paper we enable the use of supervised learning for the setting where there are only documents available (e.g.,~product or business reviews) without ground truth summaries. We create a synthetic dataset from a corpus of user reviews by sampling a review, pretending it is a summary, and generating noisy versions thereof which we treat as pseudo-review input. We introduce several linguistically motivated noise generation functions and a summarization model which learns to denoise the input and generate the original review. At test time, the model accepts genuine reviews and generates a summary containing salient opinions, treating those that do not reach consensus as noise. Extensive automatic and human evaluation shows that our model brings substantial improvements over both abstractive and extractive baselines.Comment: ACL 202
    corecore